Tag Archives: Directional

Study and Design of Differential Microphone Arrays

FREEDownload : Study and Design of Differential Microphone Arrays

Jacob Benesty, Jingdong Chen, "Study and Design of Differential Microphone Arrays"
English | 2013 | ISBN-10: 364233752X, 3642427561 | 180 pages | PDF | 6 MB

Study and Design of Differential Microphone Arrays
Microphone arrays have attracted a lot of interest over the last few decades since they have the potential to solve many important problems such as noise reduction/speech enhancement, source separation, dereverberation, spatial sound recording, and source localization/tracking, to name a few. However, the design and implementation of microphone arrays with beamforming algorithms is not a trivial task when it comes to processing broadband signals such as speech. Indeed, in most sensor arrangements, the beamformer output tends to have a frequency-dependent response. One exception, perhaps, is the family of differential microphone arrays (DMAs) who have the promise to form frequency-independent responses. Moreover, they have the potential to attain high directional gains with small and compact apertures. As a result, this type of microphone arrays has drawn much research and development attention recently. This book is intended to provide a systematic study of DMAs from a signal processing perspective. The primary objective is to develop a rigorous but yet simple theory

for the design, implementation, and performance analysis of DMAs. The theory includes some signal processing techniques for the design of commonly used first-order, second-order, third-order, and also the general Nth-order DMAs. For each order, particular examples are given on how to form standard directional patterns such as the dipole, cardioid, supercardioid, hypercardioid, subcardioid, and quadrupole. The study demonstrates the performance of the different order DMAs in terms of beampattern, directivity factor, white noise gain, and gain for point sources. The inherent relationship between differential processing and adaptive beamforming is discussed, which provides a better understanding of DMAs and why they can achieve high directional gain. Finally, we show how to design DMAs that can be robust against white noise amplification.
DOWNLOAD LINKS:
Buy Premium To Support Me & Get Resumable Support & Max Speed
Uploaded.net:

Continue reading

Physical Principles of Medical Ultrasonics

FREEDownload : Physical Principles of Medical Ultrasonics

Physical Principles of Medical Ultrasonics
English | Radiology | 23. Januar 2004 | ISBN-10: 0471970026 | 528 pages | Pdf | 8.3 mb
The physical properties of ultrasound, particularly its highly directional beam behaviour, and its complex interactions with human tissues, have led to its becoming a vitally important tool in both investigative and interventional medicine, and one that still has much exciting potential.

Physical Principles of Medical Ultrasonics
This new edition of a well-received book treats the phenomenon of ultrasound in the context of medical and biological applications, systematically discussing fundamental physical principles and concepts. Rather than focusing on earlier treatments, based largely on the simplifications of geometrical acoustics, this book examines concepts of wave acoustics, introducing them in the very first chapter.

Practical implications of these concepts are explored, first the generation and nature of acoustic fields, and then their formal descriptions and measurement. Real tissues attenuate and scatter ultrasound in ways that have interesting relationships to their physical chemistry, and the book includes coverage of these topics.
Buy Premium To Support Me & Get Resumable Support & Max Speed

rapidgator_net:

Continue reading

Physical Principles of Medical Ultrasonics

FREEDownload : Physical Principles of Medical Ultrasonics

Physical Principles of Medical Ultrasonics
English | Radiology | 23. Januar 2004 | ISBN-10: 0471970026 | 528 pages | Pdf | 8.3 mb
The physical properties of ultrasound, particularly its highly directional beam behaviour, and its complex interactions with human tissues, have led to its becoming a vitally important tool in both investigative and interventional medicine, and one that still has much exciting potential.

Physical Principles of Medical Ultrasonics
This new edition of a well-received book treats the phenomenon of ultrasound in the context of medical and biological applications, systematically discussing fundamental physical principles and concepts. Rather than focusing on earlier treatments, based largely on the simplifications of geometrical acoustics, this book examines concepts of wave acoustics, introducing them in the very first chapter.

Practical implications of these concepts are explored, first the generation and nature of acoustic fields, and then their formal descriptions and measurement. Real tissues attenuate and scatter ultrasound in ways that have interesting relationships to their physical chemistry, and the book includes coverage of these topics.
Buy Premium To Support Me & Get Resumable Support & Max Speed

rapidgator_net:

Continue reading

Dynamical Systems III

V.I. Arnold, V.V. Kozlov, A.I. Neishtadt, A. Iacob, "Dynamical Systems III: Mathematical Aspects of Classical and Celestial Mechanics"
1993 | pages: 299 | ISBN: 3540572414 | PDF | 15,9 mb
As an encyclopaedia article, this book does not seek to serve as a textbook, nor to replace the original articles whose results it describes. The book's goal is to provide an overview, pointing out highlights and unsolved problems, and putting individual results into a coherent context. It is full of historical nuggets, many of them surprising. … The examples are especially helpful; if a particular topic seems difficult, a later example frequently tames it. The writing is refreshingly direct, never degenerating into a vocabulary lesson for its own sake. The book accomplishes the goals it has set for itself. While it is not an introduction to the field, it is an excellent overview.

My Links

Continue reading