Tag Archives: metastable

“Advances in Crystallization Processes” ed. by Yitzhak Mastai

FREEDownload : “Advances in Crystallization Processes” ed. by Yitzhak Mastai

"Advances in Crystallization Processes" ed. by Yitzhak Mastai
InTeOpP | 2012 | ISBN: 9535105817 9789535105817 | 659 pages | PDF | 51 MB
This book provides the latest research developments in many aspects of crystallization including: chiral crystallization, crystallization of nanomaterials and the crystallization of amorphous and glassy materials. This book is of interest to both fundamental research and also to practicing scientists and will prove invaluable to all chemical engineers and industrial chemists in the process industries as well as crystallization workers and students in industry and academia.

“Advances in Crystallization Processes” ed. by Yitzhak Mastai
Crystallization is used at some stage in nearly all process industries as a method of production, purification or recovery of solid materials. In recent years, a number of new applications have also come to rely on crystallization processes such as the crystallization of nano and amorphous materials.

Contents
Section 1 Chiral crystallization
1 Separation of the Mixtures of Chiral Compounds by Crystallization
2 Crystallization on Self Assembled Monolayers
3 Asymmetric Reaction Using Molecular Chirality Controlled by Spontaneous Crystallization
Section 2 Crystallization of amorphous and glassy materials
4 Preparation of Na+ Superionic Conductors by Crystallization of Glass
5 Crystallization Kinetics of Metallic Glasses
6 Crystallization Kinetics of Amorphous Materials
7 Thermodynamics of Enthalpy Relaxation and Hole Formation of Polymer Glasses
8 Crystallization Behavior and Control of Amorphous Alloys
Section 3 Crystallization of nanomaterials
9 Influence of Crystallization on the Properties of Sn02 Thin Films
10 Crystallization of Sub-Micrometer Sized ZSM-5 Zeolites in SDA-Free Systems
11 The Growth of Chalcedony (Nanocrystalline Silica) in Electric Organs from Living Marine Fish
12 Synthesis and Characterization of Crystalline Zirconium Titanate Obtained by Sol-Gel
13 Characterization of Sol-Gel-Derived and Crystallized ??2, Zr02, Zr02-Y203 Thin Films on Si(001) Wafers with High Dielectric Constant
14 Crystalization in Spinel Ferrite Nanoparticles
Section 4 Bulk Crystallization from Aqueous Solutions
15 Separation of Uranyl Nitrate Hexahydrate Crystal from Dissolver Solution of Irradiated Fast Neutron Reactor Fuel
16 Stable and Metastable Phase Equilibria in the Salt-Water Systems
17 'Salt Weathering' Distress on Concrete by Sulfates?
18 Crystallization, Alternation and Recrystallization of Sulphates
Section 5 General issues in crystallization
19 Synthetic Methods for Perovskite Materials – Structure and Morphology
20 Phase Behavior and Crystal Structure of Binary Polycyclic Aromatic Compound Mixtures
21 Structure of Pure Aluminum After Endogenous and Exogenous Inoculation
22 Phosphoramidates: Molecular Packing and Hydrogen Bond Strength in Compounds Having a P(0)(N)n(0)3-n (n = 1, 2, 3) Skeleton
23 Synthesis and X-Ray Crystal Structure of a-Keggin-Type Aluminum-Substituted Polyoxotungstate
24 The Diffusion Model of Grown-ln Microdefects Formation During Crystallization of Dislocation-Free Silicon Single Crystals
25 Preparation of Carvedilol Spherical Crystals Having Solid Dispersion Structure by the Emulsion Solvent Diffusion Method and Evaluation of Its in vitro Characteristics
Download:
Buy Premium To Support Me & Get Resumable Support & Max Speed
Uploaded.net:

Continue reading

Quantum Mechanical Tunneling in Chemical Physics

FREEDownload : Quantum Mechanical Tunneling in Chemical Physics

Hiroki Nakamura, Gennady Mil'nikov, "Quantum Mechanical Tunneling in Chemical Physics"
English | ISBN: 1466507314 | 2013 | 226 pages | PDF | 3 MB

Quantum Mechanical Tunneling in Chemical Physics
Quantum mechanical tunneling plays important roles in a wide range of natural sciences, from nuclear and solid-state physics to proton transfer and chemical reactions in chemistry and biology. Responding to the need for further understanding of multidimensional tunneling, the authors have recently developed practical methods that can be applied to multidimensional systems. Quantum Mechanical Tunneling in Chemical Physics presents basic theories, as well as original ones developed by the authors. It also provides methodologies and numerical applications to real molecular systems.

The book offers information so readers can understand the basic concepts and dynamics of multidimensional tunneling phenomena and use the described methods for various molecular spectroscopy and chemical dynamics problems. The text focuses on three tunneling phenomena: (1) energy splitting, or tunneling splitting, in symmetric double well potential, (2) decay of metastable state through tunneling, and (3) tunneling effects in chemical reactions. Incorporating mathematics to explain basic theories, the text requires readers to have graduate-level math to grasp the concepts presented.

The book reviews low-dimensional theories and clarifies their insufficiency conceptually and numerically. It also examines the phenomenon of nonadiabatic tunneling, which is common in molecular systems. The book describes applications to real polyatomic molecules, such as vinyl radicals and malonaldehyde, demonstrating the high efficiency and accuracy of the method. It discusses tunneling in chemical reactions, including theories for direct evaluation of reaction rate constants for both electronically adiabatic and nonadiabatic chemical reactions. In the final chapter, the authors touch on future perspectives.
Buy Premium To Support Me & Get Resumable Support & Max Speed

uploadable_ch:

Continue reading